Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Viruses ; 16(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675880

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) often causes severe viral pneumonia. Although many studies using mouse models have examined the pathogenicity of SARS-CoV-2, COVID-19 pathogenesis remains poorly understood. In vivo imaging analysis using two-photon excitation microscopy (TPEM) is useful for elucidating the pathology of COVID-19, providing pathological insights that are not available from conventional histological analysis. However, there is no reporter SARS-CoV-2 that demonstrates pathogenicity in C57BL/6 mice and emits sufficient light intensity for two-photon in vivo imaging. Here, we generated a mouse-adapted strain of SARS-CoV-2 (named MASCV2-p25) and demonstrated its efficient replication in the lungs of C57BL/6 mice, causing fatal pneumonia. Histopathologic analysis revealed the severe inflammation and infiltration of immune cells in the lungs of MASCV2-p25-infected C57BL/6 mice, not unlike that observed in COVID-19 patients with severe pneumonia. Subsequently, we generated a mouse-adapted reporter SARS-CoV-2 (named MASCV-Venus-p9) by inserting the fluorescent protein-encoding gene Venus into MASCV2-p25 and sequential lung-to-lung passages in C57BL/6 mice. C57BL/6 mice infected with MASCV2-Venus-p9 exhibited severe pneumonia. In addition, the TPEM of the lungs of the infected C57BL/6J mice showed that the infected cells emitted sufficient levels of fluorescence for easy observation. These findings suggest that MASCV2-Venus-p9 will be useful for two-photon in vivo imaging studies of the pathogenesis of severe COVID-19 pneumonia.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Pulmón , Ratones Endogámicos C57BL , SARS-CoV-2 , Animales , Ratones , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , COVID-19/virología , Pulmón/virología , Pulmón/patología , Pulmón/diagnóstico por imagen , Humanos , Genes Reporteros , Replicación Viral
2.
Microbiol Resour Announc ; 13(5): e0126923, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38597639

RESUMEN

We report a draft genome sequence of Yersinia pseudotuberculosis isolated from the spleen of a wild rat from Mikura-shima Island, Japan. The bacterium was identified as serotype O:4b using PCR-based O-genotyping. These genomic data provide insights into the pathogenic potential of this strain in spontaneous outbreaks among wild animals.

3.
PLoS One ; 19(3): e0287068, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536820

RESUMEN

High viral titers of infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been detected in human corpses long after death. However, little is known about the kinetics of infectious SARS-CoV-2 in corpses. In this case series study, we investigated the postmortem kinetics of infectious SARS-CoV-2 in human corpses by collecting nasopharyngeal swab samples at multiple time points from six SARS-CoV-2-infected patients after their death. SARS-CoV-2 RNA was detected by quantitative reverse transcription-polymerase chain reaction from nasopharyngeal swab samples collected from all six deceased patients. A viral culture showed the presence of infectious virus in one deceased patient up to 12 days after death. Notably, this patient had a shorter time from symptom onset to death than the other patients, and autopsy samples showed pathological findings consistent with viral replication in the upper respiratory tract. Therefore, this patient died during the viral shedding phase, and the amount of infectious virus in the corpse did not decrease over time up to the date of autopsy (12 days after death). The findings of this study indicate that the persistence of SARS-CoV-2 in corpses can vary among individuals and may be associated with the stage of the disease at the time of death. These important results complement many previously reported findings on the infectivity of SARS-CoV-2 at postmortem.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral/genética , ARN Viral/análisis , Carga Viral , Cadáver
4.
Commun Biol ; 7(1): 331, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491227

RESUMEN

During the Omicron wave, previous variants such as BA.2, BA.4, and BA.5 were replaced by newer variants with additional mutations in the spike protein. These variants, BA.4.6, BQ.1.1, and XBB, have spread in different countries with different degrees of success. Here, we evaluated the replicative ability and pathogenicity of BA.4.6, BQ1.1, and XBB clinical isolates in male Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with these Omicron subvariants, the replicative ability of BQ.1.1 and XBB in lung tissue was higher than that of BA.4.6 and BA.5. Of note, BQ.1.1 was lethal in both male and female transgenic human ACE2 hamsters. In competition assays, XBB replicated better than BQ.1.1 in the nasal turbinate tissues of female hamsters previously infected with Omicron BA.2. These results suggest that newer Omicron subvariants in the XBB family are still evolving and should be closely monitored.


Asunto(s)
Bioensayo , Replicación del ADN , Animales , Cricetinae , Femenino , Humanos , Masculino , Animales Modificados Genéticamente , Mesocricetus , Mutación
5.
EBioMedicine ; 99: 104950, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159532

RESUMEN

BACKGROUND: Pulmonary infection with SARS-CoV-2 stimulates host immune responses and can also result in the progression of dysregulated and critical inflammation. Throughout the pandemic, the management and treatment of COVID-19 has been continuously updated with a range of antiviral drugs and immunomodulators. Monotherapy with oral antivirals has proven to be effective in the treatment of COVID-19. However, treatment should be initiated in the early stages of infection to ensure beneficial therapeutic outcomes, and there is still room for further consideration on therapeutic strategies using antivirals. METHODS: We studied the therapeutic effects of monotherapy with the oral antiviral ensitrelvir or the anti-inflammatory corticosteroid methylprednisolone and combination therapy with ensitrelvir and methylprednisolone in a delayed dosing model of hamsters infected with SARS-CoV-2. FINDINGS: Combination therapy with ensitrelvir and methylprednisolone improved respiratory conditions and reduced the development of pneumonia in hamsters even when the treatment was started after 2 days post-infection. The combination therapy led to a differential histological and transcriptomic pattern in comparison to either of the monotherapies, with reduced lung damage and down-regulation of expression of genes involved in the inflammatory response. Furthermore, we found that the combination treatment is effective in case of infection with either the highly pathogenic delta or circulating omicron variants. INTERPRETATION: Our results demonstrate the advantage of combination therapy with antiviral and corticosteroid drugs in COVID-19 treatment from the perspective of lung pathology and host inflammatory responses. FUNDING: Funding bodies are described in the Acknowledgments section.


Asunto(s)
COVID-19 , Humanos , Animales , Cricetinae , Tratamiento Farmacológico de COVID-19 , Retraso del Tratamiento , SARS-CoV-2 , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Metilprednisolona/farmacología , Metilprednisolona/uso terapéutico , Corticoesteroides , Antivirales/farmacología , Antivirales/uso terapéutico
6.
J Med Virol ; 95(12): e29324, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38103015

RESUMEN

Human herpesvirus-8 (HHV-8) viremia is associated with refractory conditions in patients infected with HIV-1. Therefore, we evaluated the factors related to plasma HHV-8-DNA. Participants included patients infected with HIV-1 who visited our hospital. Plasma HHV-8-DNA levels were measured using real-time polymerase chain reaction, and anti-HHV-8 antibodies were assessed through enzyme immunoassays using multiple antigens (K8.1, ORF59, ORF65, and LANA). Factors related to plasma HHV-8-DNA were examined using Fisher's exact test or Mann-Whitney U test. The study involved 36 patients infected with HIV-1, of whom 19 were histologically diagnosed with Kaposi's sarcoma (KS), two had multicentric Castleman's disease (MCD), and 15 did not exhibit HHV-8-related disease. Before the introduction of antiretroviral therapy (ART), plasma HHV-8-DNA was detected in 44% (7/16) of patients with KS and in 9% (1/11) of patients without HHV-8-related disease. Among patients with KS, elevated plasma HHV-8-DNA levels (≥0.05 copies/µL) correlated with the presence of CDC category C diseases other than KS (p = 0.0337), anti-HHV-8 antibody negativity (p = 0.0337), anemia (p = 0.0474), and thrombocytopenia (p = 0.0146). Following ART initiation, the percentage of patients positive for plasma HHV-8-DNA decreased from 44% (7/16) to 6% (1/17), and the percentage of patients positive for anti-HHV-8 antibodies increased from 44% (7/16) to 88% (15/17). Finally, plasma HHV-8-DNA positivity and anti-HHV-8 antibody negativity were observed in two patients with MCD. Our findings suggest that insufficient production of anti-HHV-8 antibodies was associated with HHV-8 viremia, and that anti-HHV-8 antibody production was recovered with ART; thus, indicating the possibility of involvement of humoral immunity in suppressing HHV-8 viremia.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Viremia , VIH-1/genética , ADN Viral
7.
Proc Natl Acad Sci U S A ; 120(52): e2314808120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134196

RESUMEN

Infectious virus shedding from individuals infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is used to estimate human-to-human transmission risk. Control of SARS-CoV-2 transmission requires identifying the immune correlates that protect infectious virus shedding. Mucosal immunity prevents infection by SARS-CoV-2, which replicates in the respiratory epithelium and spreads rapidly to other hosts. However, whether mucosal immunity prevents the shedding of the infectious virus in SARS-CoV-2-infected individuals is unknown. We examined the relationship between viral RNA shedding dynamics, duration of infectious virus shedding, and mucosal antibody responses during SARS-CoV-2 infection. Anti-spike secretory IgA antibodies (S-IgA) reduced viral RNA load and infectivity more than anti-spike IgG/IgA antibodies in infected nasopharyngeal samples. Compared with the IgG/IgA response, the anti-spike S-IgA post-infection responses affected the viral RNA shedding dynamics and predicted the duration of infectious virus shedding regardless of the immune history. These findings highlight the importance of anti-spike S-IgA responses in individuals infected with SARS-CoV-2 for preventing infectious virus shedding and SARS-CoV-2 transmission. Developing medical countermeasures to shorten S-IgA response time may help control human-to-human transmission of SARS-CoV-2 infection and prevent future respiratory virus pandemics.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Esparcimiento de Virus , Formación de Anticuerpos , Tiempo de Reacción , Anticuerpos Antivirales , ARN Viral , Inmunoglobulina G , Inmunoglobulina A , Inmunoglobulina A Secretora
8.
J Med Virol ; 95(8): e28990, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37537838

RESUMEN

Numerous genomic analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been conducted, highlighting its variations and lineage transitions. Despite the importance of forensic autopsy in investigating deaths due to coronavirus disease 2019 (COVID-19), including out-of-hospital deaths, viral genomic analysis has rarely been reported due in part to postmortem changes. In this study, various specimens were collected from 18 forensic autopsy cases with SARS-CoV-2 infection. Reverse-transcription quantitative polymerase chain reaction revealed the distribution of the virus in the body, primarily in the respiratory organs. Next-generation sequencing determined the complete genome sequences in 15 of the 18 cases, although some cases showed severe postmortem changes or degradation of tissue RNA. Intrahost genomic diversity of the virus was identified in one case of death due to COVID-19. The accumulation of single-nucleotide variations in the lung of the case suggested the intrahost evolution of SARS-CoV-2. Lung of the case showed diffuse alveolar damage histologically and positivity for SARS-CoV-2 by immunohistochemical analysis and in situ hybridization, indicating virus-associated pneumonia. This study provides insights into the feasibility of genomic analysis of SARS-CoV-2 in forensic autopsy cases and the potential for uncovering important information in COVID-19 deaths, including out-of-hospital deaths.


Asunto(s)
COVID-19 , Humanos , COVID-19/patología , SARS-CoV-2/genética , Autopsia , Pulmón , Genómica , Cambios Post Mortem
9.
Vaccine ; 41(41): 6025-6035, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37635002

RESUMEN

The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a glycoprotein, expressed on the virion surface, that mediates infection of host cells by directly interacting with host receptors. As such, it is a reasonable target to neutralize the infectivity of the virus. Here we found that a recombinant S protein vaccine adjuvanted with Alhydrogel or the QS-21-like adjuvant Quil-A effectively induced anti-S receptor binding domain (RBD) serum IgG and neutralizing antibody titers in the Syrian hamster model, resulting in significantly low SARS-CoV-2 replication in respiratory organs and reduced body weight loss upon virus challenge. Severe lung inflammation upon virus challenge was also strongly suppressed by vaccination. We also found that the S protein vaccine adjuvanted with Alhydrogel, Quil-A, or an AS03-like adjuvant elicited significantly higher neutralizing antibody titers in mice than did unadjuvanted vaccine. Although the neutralizing antibody titers against the variant viruses B.1.351 and B.1.617.2 declined markedly in mice immunized with wild-type S protein, the binding antibody levels against the variant S proteins were equivalent to those against wild-type S. When splenocytes from the immunized mice were re-stimulated with the S protein in vitro, the induced Th1 or Th2 cytokine levels were not significantly different upon re-stimulation with wild-type S or variant S, suggesting that the T-cell responses against the variants were the same as those against the wild-type virus. Upon Omicron XBB-challenge in hamsters, wild-type S-vaccination with Alhydrogel or AS03 reduced lung virus titers on Day 3, and the Quil-A adjuvanted group showed less body weight loss, although serum neutralizing antibody titers against XBB were barely detected in vitro. Collectively, recombinant vaccines coupled with different adjuvants may be promising modalities to combat new variant viruses by inducing various arms of the immune response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Ratones , Hidróxido de Aluminio , Glicoproteína de la Espiga del Coronavirus , COVID-19/prevención & control , Adyuvantes Inmunológicos , Vacunas Sintéticas , Mesocricetus , Anticuerpos Neutralizantes , Pérdida de Peso
10.
Jpn J Infect Dis ; 76(5): 302-309, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37394459

RESUMEN

Minimally invasive autopsy (MIA) is an alternative to a full autopsy for the collection of tissue samples from patients' bodies using instruments such as a biopsy needle. MIA has been conducted in many cases of coronavirus disease 2019 (COVID-19) and has contributed to the elucidation of the disease pathogenesis. However, most cases analyzed are hospital deaths, and there are few reports on the application of MIA in out-of-hospital deaths with varying extents of post-mortem changes. In this study, MIA and autopsies were performed in 15 patients with COVID-19 2-30 days after death, including 11 out-of-hospital deaths. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome detection by reverse transcriptase quantitative polymerase chain reaction using MIA samples was mostly consistent with autopsy samples, particularly lung tissue, even in out-of-hospital cases. MIA had high sensitivity and specificity (> 0.80). Histological examination of lung tissue obtained by MIA showed characteristics of COVID-19 pneumonia, with 91% agreement with autopsy samples, whereas localization of SARS-CoV-2 protein in lung tissue was indicated by immunohistochemistry, with 75% agreement. In conclusion, these results suggest that MIA is applicable to out-of-hospital deaths due to COVID-19 with various postmortem changes, especially when autopsies are not available.


Asunto(s)
COVID-19 , Humanos , COVID-19/patología , Autopsia/métodos , SARS-CoV-2 , Pulmón/patología , Hospitales
11.
Nat Commun ; 14(1): 4231, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454219

RESUMEN

Ensitrelvir, an oral antiviral agent that targets a SARS-CoV-2 main protease (3CLpro or Nsp5), is clinically useful against SARS-CoV-2 including its omicron variants. Since most omicron subvariants have reduced sensitivity to most monoclonal antibody therapies, SARS-CoV-2 resistance to other antivirals including main protease inhibitors such as ensitrelvir is a major public health concern. Here, repeating passages of SARS-CoV-2 in the presence of ensitrelvir revealed that the M49L and E166A substitutions in Nsp5 are responsible for reduced sensitivity to ensitrelvir. Both substitutions reduced in vitro virus growth in the absence of ensitrelvir. The combination of the M49L and E166A substitutions allowed the virus to largely evade the suppressive effect of ensitrelvir in vitro. The virus possessing Nsp5-M49L showed similar pathogenicity to wild-type virus, whereas the virus possessing Nsp5-E166A or Nsp5-M49L/E166A slightly attenuated. Ensitrelvir treatment of hamsters infected with the virus possessing Nsp5-M49L/E166A was ineffective; however, nirmatrelvir or molnupiravir treatment was effective. Therefore, it is important to closely monitor the emergence of ensitrelvir-resistant SARS-CoV-2 variants to guide antiviral treatment selection.


Asunto(s)
COVID-19 , Animales , Cricetinae , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico
12.
EBioMedicine ; 91: 104561, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37043872

RESUMEN

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2 lineage) variant was first identified at the end of 2020 and possessed two unique amino acid substitutions in its spike protein: S-P681R, at the S1/S2 cleavage site, and S-D950N, in the HR1 of the S2 subunit. However, the roles of these substitutions in virus phenotypes have not been fully characterized. METHODS: We used reverse genetics to generate Wuhan-D614G viruses with these substitutions and delta viruses lacking these substitutions and explored how these changes affected their viral characteristics in vitro and in vivo. FINDINGS: S-P681R enhanced spike cleavage and membrane fusion, whereas S-D950N slightly promoted membrane fusion. Although S-681R reduced the virus replicative ability especially in VeroE6 cells, neither substitution affected virus replication in Calu-3 cells and hamsters. The pathogenicity of all recombinant viruses tested in hamsters was slightly but not significantly affected. INTERPRETATION: Our observations suggest that the S-P681R and S-D950N substitutions alone do not increase virus pathogenicity, despite of their enhancement of spike cleavage or fusogenicity. FUNDING: A full list of funding bodies that contributed to this study can be found under Acknowledgments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Virulencia/genética , Fusión de Membrana
13.
Glob Health Med ; 5(1): 5-14, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36865900

RESUMEN

As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19; proper infection prevention practices reduced these risks.

14.
Nat Commun ; 14(1): 1620, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959194

RESUMEN

The prevalence of the Omicron subvariant BA.2.75 rapidly increased in India and Nepal during the summer of 2022, and spread globally. However, the virological features of BA.2.75 are largely unknown. Here, we evaluated the replicative ability and pathogenicity of BA.2.75 clinical isolates in Syrian hamsters. Although we found no substantial differences in weight change among hamsters infected with BA.2, BA.5, or BA.2.75, the replicative ability of BA.2.75 in the lungs is higher than that of BA.2 and BA.5. Of note, BA.2.75 causes focal viral pneumonia in hamsters, characterized by patchy inflammation interspersed in alveolar regions, which is not observed in BA.5-infected hamsters. Moreover, in competition assays, BA.2.75 replicates better than BA.5 in the lungs of hamsters. These results suggest that BA.2.75 can cause more severe respiratory disease than BA.5 and BA.2 in a hamster model and should be closely monitored.


Asunto(s)
COVID-19 , Animales , Cricetinae , SARS-CoV-2 , Bioensayo , Replicación del ADN , India , Mesocricetus
15.
Sci Rep ; 13(1): 2669, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36792635

RESUMEN

A high-flow nasal cannula (HFNC) therapy plays a significant role in providing respiratory support to critically ill patients with coronavirus disease 2019 (COVID-19); however, the dispersion of the virus owing to aerosol generation is a matter of concern. This study aimed to evaluate if HFNC disperses the virus into the air. Among patients with COVID-19 admitted to private rooms with controlled negative pressure, we enrolled those admitted within 10 days of onset and requiring oxygenation through a conventional nasal cannula or HFNC therapy. Of the 17 patients enrolled, we obtained 22 samples (11 in the conventional nasal cannula group and 11 in the HFNC group). Viral RNA was detected in 20 nasopharyngeal swabs, and viable viruses were isolated from three nasopharyngeal swabs. Neither viral RNA nor viable virus was detected in the air sample at 0.5 m regardless of the oxygen-supplementation device. We detected viral RNA in two samples in the conventional nasal cannula group but not in the HFNC therapy group in gelatin filters located 3 m from the patient and the surface of the ventilation. This study directly demonstrated that despite viral RNA detection in the nasopharynx, viruses may not be dispersed by HFNC therapy. This warrants further research to determine if similar results can be obtained under different conditions.


Asunto(s)
COVID-19 , Ventilación no Invasiva , Insuficiencia Respiratoria , Humanos , SARS-CoV-2 , COVID-19/terapia , Terapia por Inhalación de Oxígeno/métodos , Cánula , Aerosoles y Gotitas Respiratorias , Ventilación no Invasiva/métodos , Nasofaringe , Insuficiencia Respiratoria/terapia
16.
Int J Infect Dis ; 129: 103-109, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36754229

RESUMEN

OBJECTIVES: The prolonged presence of infectious SARS-CoV-2 in deceased patients with COVID-19 has been reported. However, infectious virus titers have not been determined. Such information is important for public health, death investigation, and handling corpses. The aim of this study was to assess the level of SARS-CoV-2 infectivity in the corpses of patients with COVID-19. METHODS: We collected 11 nasopharyngeal swabs and 19 lung tissue specimens from 11 autopsy cases with COVID-19 in 2021. We then investigated the viral genomic copy number by real-time reverse transcription-polymerase chain reaction and infectious titers by cell culture and virus isolation. RESULTS: Infectious virus was present in six of 11 (55%) cases, four of 11 (36%) nasopharyngeal swabs, and nine of 19 (47%) lung specimens. The virus titers ranged from 6.00E + 01 plaque-forming units/ml to 2.09E + 06 plaque-forming units/g. In all cases in which an infectious virus was found, the time from death to discovery was within 1 day and the longest postmortem interval was 13 days. CONCLUSION: The corpses of patients with COVID-19 may have high titers of infectious virus after a long postmortem interval (up to 13 days). Therefore, appropriate infection control measures must be taken when handling corpses.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Pulmón , Prueba de COVID-19 , Cadáver
17.
Nat Commun ; 14(1): 1076, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841831

RESUMEN

COVID-19 caused by SARS-CoV-2 has continually been serious threat to public health worldwide. While a few anti-SARS-CoV-2 therapeutics are currently available, their antiviral potency is not sufficient. Here, we identify two orally available 4-fluoro-benzothiazole-containing small molecules, TKB245 and TKB248, which specifically inhibit the enzymatic activity of main protease (Mpro) of SARS-CoV-2 and significantly more potently block the infectivity and replication of various SARS-CoV-2 strains than nirmatrelvir, molnupiravir, and ensitrelvir in cell-based assays employing various target cells. Both compounds also block the replication of Delta and Omicron variants in human-ACE2-knocked-in mice. Native mass spectrometric analysis reveals that both compounds bind to dimer Mpro, apparently promoting Mpro dimerization. X-ray crystallographic analysis shows that both compounds bind to Mpro's active-site cavity, forming a covalent bond with the catalytic amino acid Cys-145 with the 4-fluorine of the benzothiazole moiety pointed to solvent. The data suggest that TKB245 and TKB248 might serve as potential therapeutics for COVID-19 and shed light upon further optimization to develop more potent and safer anti-SARS-CoV-2 therapeutics.


Asunto(s)
Antivirales , COVID-19 , Proteasas 3C de Coronavirus , Inhibidores de Proteasas , SARS-CoV-2 , Animales , Humanos , Ratones , Antivirales/farmacología , Benzotiazoles , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/química , Proteasas 3C de Coronavirus/antagonistas & inhibidores
18.
iScience ; 26(2): 105969, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687316

RESUMEN

The immune responses to SARS-CoV-2 variants in COVID-19 cases are influenced by various factors including pre-existing immunity via vaccination and prior infection. Elucidating the drivers for upgrading neutralizing activity to SARS-CoV-2 in COVID-19 cases with pre-existing immunity will aid in improving COVID-19 booster vaccines with enhanced cross-protection against antigenically distinct variants, including the Omicron sub-lineage BA.4/5. This study revealed that the magnitude and breadth of neutralization activity to SARS-CoV-2 variants after breakthrough infections are determined primarily by upper respiratory viral load and vaccination-infection time interval. Extensive neutralizing breadth, covering even the most antigenically distant BA.4/5, was observed in cases with higher viral load and longer time intervals. Antigenic cartography depicted a critical role of the time interval in expanding the breadth of neutralization to SARS-CoV-2 variants. Our results illustrate the importance of dosing interval optimization as well as antigen design in developing variant-proof booster vaccines.

19.
Pathol Int ; 73(3): 120-126, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36598024

RESUMEN

During the coronavirus disease 2019 (COVID-19) pandemic, autopsies have provided valuable insights into the pathogenesis of COVID-19. The precise effect of this pandemic on autopsy procedures in Japan, especially in instances unrelated to COVID-19, has not yet been established. Therefore, we conducted a questionnaire survey from December 2020 to January 2021 regarding the status of pathological autopsy practices in Japan during the first year of the COVID-19 pandemic. The questionnaire was sent to 678 medical facilities with pathologists, of which 227 responded. In cases where a confirmed diagnosis of COVID-19 was not made at the time of autopsy, many facilities counted them as suspected COVID-19 cases if pneumonia was suspected clinically. At around half of the sites, autopsies were prohibited for suspected COVID-19 cases. In addition, the number of autopsies of non-COVID-19 cases during the pandemic period was also investigated, and a significant decrease was observed compared with the incidence in the pre-pandemic period. The COVID-19 pandemic has affected not only the autopsies of COVID-19 cases but also the entire practice of pathological autopsies. It is necessary to establish a system that supports the implementation of pathological autopsy practices during the pandemic of an emerging infectious disease.


Asunto(s)
COVID-19 , Humanos , Autopsia , Pandemias , SARS-CoV-2 , Japón/epidemiología
20.
Sci Transl Med ; 15(679): eabq4064, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36327352

RESUMEN

In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro, few have proven to be effective in vivo. Here, we show that oral administration of S-217622 (ensitrelvir), an inhibitor of SARS-CoV-2 main protease (Mpro; also known as 3C-like protease), decreases viral load and ameliorates disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to submicromolar concentrations in cells. Oral administration of S-217622 demonstrated favorable pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern, including the highly pathogenic Delta variant and the recently emerged Omicron BA.5 and BA.2.75 variants. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase 3 clinical trial (clinical trial registration no. jRCT2031210350), has remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.


Asunto(s)
COVID-19 , Humanos , Cricetinae , SARS-CoV-2 , Carga Viral , Estudios Prospectivos , Inhibidores de Proteasas/farmacología , Proteínas no Estructurales Virales , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...